
Journal of Geometry and Physics 46 (2003) 159–173

Toric complete intersections and
weighted projective space

Maximilian Kreuzera, Erwin Rieglera,∗, David A. Sahakyanb
a Institute für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstraße 8–10,

A-1040 Wien, Austria
b Department of Physics, University of Chicago, 5640 S. Ellis Av., Chicago, IL 60637, USA

Received 18 April 2002

Abstract

It has been shown by Batyrev and Borisov that nef partitions of reflexive polyhedra can be used
to construct mirror pairs of complete intersection Calabi–Yau manifolds in toric ambient spaces.
We construct a number of such spaces and compute their cohomological data. We also discuss the
relation of our results to complete intersections in weighted projective spaces and try to recover
them as special cases of the toric construction. As compared to hypersurfaces, codimension two
more than doubles the number of spectra withh11 = 1. Altogether we find 87 new (mirror pairs
of) Hodge data, mainly withh11 ≤ 4.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The first sizeable sets of Calabi–Yau manifolds were constructed as complete intersections
(CICY) in products of projective spaces[1,2]. These manifolds have many complex structure
deformations but only few Kähler moduli, which are inherited from the ambient space.
With the discovery of mirror symmetry[3] the main interest therefore turned to weighted
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projective (WP) spaces, where the resolution of singularities contributes additional Kähler
moduli and thus provides a much more symmetric picture[4]. It turned out, however, that
mirror symmetry is only approximately realized in this class of models[5,6].

It was then discovered by Batyrev[7] that toric geometry (TG), which generalizes (prod-
ucts of)WP spaces, provides the appropriate framework for mirror symmetry. In TG the
monomial deformations of the hypersurface equations and the gluing data defining the am-
bient space are given in terms of lattice polytopes that live in a dual pair of lattices. The
Calabi–Yau condition for the generic hypersurface requires that these polytopes are dual
to one another. This implies, by definition, that the ambient space and the hypersurface
are given in terms of a dual pair of reflexive polyhedra, with∆ ⊂ M and∆∗ ⊂ N =
Hom(M,Z) being exchanged under the mirror involution. Mirror symmetry thus derives
from an elementary combinatorial duality.

Because of the large number of hypersurfaces that exist in these spaces[8–11]only little
work was directed towards complete intersections. A list of transversal configurations for
codimension 2 Calabi–Yau manifolds inWP spaces was produced by Klemm[12]. As in the
case of hypersurfaces, there is, however, in general no mirror construction available in that
context[13]. In the toric setup, the mirror construction for hypersurfaces could be extended
to general complete intersections by Batyrev and Borisov[14,15]. In addition to a reflexive
polyhedron∆∗ that describes the ambient space this involves a decomposition of∆ into
a Minkowski sum of polytopes∆i that are related to the equations defining the complete
intersection. The Calabi–Yau condition implies that these∆i are dual to a partition of the
vertices of∆∗, which is called nef because the corresponding divisors are numerically effec-
tive. The nef partitions of reflexive polyhedra again feature a beautiful combinatorial duality
that implements the mirror involution, as has been proven on the level of Hodge data in[16].

In the present paper we work out a number of examples of toric complete intersection
Calabi–Yau manifolds and discuss the relation of this construction toWP spaces. Identifying
CICYs inWP spaces as a special case of the toric construction will provide, among other
benefits, the mirrors for these manifolds. In the case of hypersurfaces inWP

4, the Newton
polytope of a transversal quasihomogeneous polynomial[17,18]can be identified with the
polyhedron∆, whose dual provides the toric resolution of the ambient space. It is thus clear
that, for codimensionsr > 1, we should look for the identification by trying to relate the
Newton polytopes of the defining polynomial equations of degreesdi to a nef partition∆i
of some reflexive polyhedron∆.

This indeed works for many cases, but the situation is not so straightforward. Already
in the case of hypersurfaces reflexivity of the Newton polytope is only guaranteed for
dimensionsn ≤ 4 [19] and indeed breaks down for the case of Calabi–Yau 4-folds[20,21].
The most relevant situation from the string theory point of view is that of 3-folds, where
already for codimension 2 the Newton polyhedra have dimension 5. Indeed, already in the
second example in the list of Ref.[12], namely degree (3, 4) equations inP1,1,1,1,1,2, the
Newton polyhedron�(7) for a degree 7 equation, is not reflexive. It is, however, possible to
reduce�(7) to a reflexive polyhedron∆ by omitting five points, so that its dual provides a
toric resolution of singularities of the weighted projective space. Moreover, in this example,
for one of the nef partitions of∆ the Hodge data agree with theWP result of[12].

In general,�(d1+d2)may differ from the Minkowski sum�(d1)+�(d2) and neither of
the two polytopes has to be reflexive. In many, but not all the cases, we can nevertheless find
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a simple modification of these polytopes that makes the Hodge data agree, and with some
more work one can check the identification in more detail. In the present note we analyze a
number of examples from the list in[12] and discuss the different situations that can occur.
Apart from our interest in this specific class of examples, we wrote a program that generates
all nef partitions with codimension 2 for arbitrary reflexive polyhedra and that computes the
Hodge data for the resulting Calabi–Yau manifolds. Using the list of 4-fold polyhedra that
were obtained in[21] we produce a sizeable list of Hodge numbers and compare them with
the complete lists for toric hypersurface. Most of the new Hodge numbers lie near the lower
“boundary region” ath11 = 1 and appear from a starting polyhedron in theN-lattice with
less than 20 points. In particular, we doubled the number of known spectra withh11 = 1.
Alltogether we found 87 pairs of new Hodge numbers not contained in the complete list of
toric hypersurfaces[8]. They are listed inTable 2and discussed inSection 6.2.

The paper is organized as follows. InSection 2we recall some facts about TG, mainly
to set up our notation. We will use the approach of the homogeneous coordinate ring, as
introduced by Cox[22]. Some basic facts on the combinatorial data of nef partitions[23] and
a new criterion for the nef property (Proposition 3.2), which was used in the computations,
can be found inSection 3. In Section 4we recall how to compute a Gorenstein cone from a
nef partition[14,16]andSection 5summarizes the polynomials defined in[16] to calculate
the Hodge data for a Gorenstein cone arising from a nef partition. The formula used in our
program can be found inRemark 5.8. In Section 6we discuss a number of examples of
complete intersections inWP

5. We conclude with a discussion of our results, which will
be posted at our web site[24] and some of which are listed in the appendix. A reader who
is only interested in new results can take a look atProposition 3.2for a new criterion of
a nef partition,Section 6.1for comparing our results with codimension two Calabi–Yau
manifolds inWP

5 spaces[12], andSection 6.2for new Hodge numbers.

2. TG and complete intersections

TG is a generalization of projective geometry where the gluing data of an algebraic
variety are encoded in a fanΣ of convex rational cones. Often, the fan is given in terms of
(the cones over the faces of) a polytope∆̄ whose vertices lie on some latticeN [25,26]. A
very useful way of defining these spaces is to introduce homogeneous coordinateszi for all
generatorsvi ∈ N (i = 1, . . . , n) of the one-dimensional cones inΣ (e.g. the vertices of
∆̄) and to consider the quotient ofC

n − Z by identifications:

(z1, . . . , zn) ∼ (λq
(I )
1 z1, . . . , λ

q
(I )
n zn),

∑
q
(I )
i vi = 0, I = 1, . . . , n− d,

where the scaling weightsq(I )i describe all linear relations among the generatorsvi and
d = dim(N) the dimension of the resulting toric varietyPΣ [22,27,28]. In the special case
n = d + 1 of a weighted projective space the exceptional setZ, which is determined in
terms of the fan, only consists of the originzi = 0.

Ample line bundles onPΣ correspond to polytopes∆ in the dual spaceM = Hom(Z, N)
[25]. Toric varieties found their way into string theory when Batyrev[7] showed that the
generic section of the line bundle corresponding to∆ defines a Calabi–Yau hypersurface in
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PΣ if ∆̄ is equal to the dual

∆∗ = {x ∈ NR|〈y, x〉 ≥ −1 ∀ y ∈ � ⊂ MR}
of ∆, whereNR is the real extension of the latticeN. A lattice polytope∆ whose dual
∆∗ is also a lattice polytope is called reflexive. A necessary condition for this is that the
origin is the unique interior lattice point of∆. Moreover, it turned out that the family of
CY hypersurfaces inPΣ(∆) that is defined by∆ provides the mirror family to the family
of CY varieties that are based on̄∆ = ∆∗ in the sense that the Hodge numbershp,q

andhd−p,q are exchanged[7]. At that time it had just become clear that hypersurfaces in
weighted projective spaces are close to but not exactly mirror symmetric[5,6]. This is true
even if orbifolds and discrete torsion are included[29,30], which do help in the situation
where the Berglund–Hübsch[31,32] construction applies[33]. Beyond the construction
of the missing mirror manifolds, however, Batyrev’s results introduced to the physicist’s
community beautiful and extremely useful new techniques, which later turned out also to
apply to the analysis of fibration structures that are important in string dualities[34–37]. In
TG CY fibrations manifest themselves as reflexive sections or projections of the polytopes
∆∗ and∆, respectively[21,38].

3. The nef partitions

In the case of a hypersurface, the supporting polyhedron of the generic section of an ample
line bundle onPΣ must be reflexive in order to get a Calabi–Yau hypersurface inPΣ. To
generalize this condition to the case of codimensionr ≥ 1, i.e. to ensure that the intersection
of r hypersurfaces is a Calabi–Yau manifold, the reflexive polytope∆ ⊂ MR must fulfil
the so called nef condition[23]. In this section, we will shortly discuss the combinatorial
properties of nef partitions and give a new criterion for a reflexive polytope to decompose
into a nef partition,Proposition 3.2, which can be used to calculate these partitions in a
simple way, as described inRemark 3.4.

Let∆ ⊂ MR be a reflexive polytope and∆∗ ⊂ NR it’s dual. From now on we denote
by∆v theset of verticesof a polytope∆. LetE := ∆∗v be the set of vertices of∆∗. We
define thed-dimensional completefanΣ[∆∗] as the union of the zero-dimensional cone
{0} together with the set of all cones:

C[F ] = {0} ∪ {z ∈ NR : λz ∈ F for someλ ∈ R>}
that support facesF of∆∗. Assume that there exists a representation ofE = E1∪ · · · ∪Er
as the union of disjoint subsetsE1, . . . , Er and integral convexΣ[∆∗] piecewise linear
support functionsϕi : NR→ R (i = 1, . . . , r)—such that

ϕi(e) =
{

1 if e ∈ Ei,
0 otherwise.

Eachϕi corresponds to a line bundleLi that defines a supporting polyhedron∆i for the
global sections:

∆i = {ẑ ∈ MR : 〈ẑ, z〉 ≥ −ϕi(z)∀ z ∈ NR}.
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ϕi definesLi in the following way. For each cone of maximal dimensionC there is amC ∈ M
such thatϕi|C = mC|C, where themC have to coincide on the intersection of two cones.
Since the fan is complete,ϕi is determined uniquely by the set{mC}. The line bundleLi is
then given by the data(UC, χ(mC)), where{UC} is an open covering of the toric variety with
open sets corresponding to the cones of maximal dimension andχ(mC) can be regarded as
a monomialxmC . The important point is that the transition functionsχ(mC̄ −mC) arising
from this construction are regular on the intersection of the corresponding open sets (for
details see[25,26]).

Conversely, each functionϕi is uniquely defined by the polyhedron∆i. A Calabi–Yau
complete intersectionis then determined by the intersection of the closure ofr hypersurfaces,
each corresponding to a global section of a line bundleLi [14,16].

Definition 3.1. If there exists a reflexive polytope∆ andr functionsϕ1, . . . , ϕr as defined
above, we call the data

Π(∆) = {∆1, . . . , ∆r}
anef partition.

Equivalent toΠ(∆) := {∆1, . . . , ∆r} being a nef partition is that any two∆i only have
{0} as a common point and that∆ can be written as the Minkowski sum∆1+· · ·+∆r = ∆,
as shown by the following proposition.

Proposition 3.2. Π(∆) = {∆1, . . . , ∆r} is a nef partition if and only if∆ is the Minkowski
sum of r rational polyhedra∆ = ∆1+ · · · +∆r and∆i ∩∆j = {0} ∀ i �= j.

Proof. ⇒: Assume that∆ can be written as the Minkowski sum ofr rational polyhedra
∆ = ∆1+ · · · +∆r with ∆i ∩∆j = {0} ∀ i �= j. Definer functionsϕi : NR→ R as

ϕi(z) = −min
ẑ∈∆i

〈ẑ, z〉 ∀ z ∈ NR.

• Theϕi are linear on cones ofΣ[∆∗]. It is sufficient to consider restrictions of theϕi to
cones of maximal dimensionC[F ], where

F = ∆∗ ∩ {z ∈ NR : 〈ê, z〉 = −1}
is a facet of∆∗ corresponding to a vertexê ∈ ∆v. Now letê = ê1+· · ·+êi+· · ·+êr, where
êi ∈ ∆vi denotes a vertex of∆i (i = 1, . . . , r). If we take another vertex̂e′i �= êi ∈ ∆vi ,
then the sum̂e′ = ê1+ · · · + ê′i + · · · + êr denotes another vertex of∆. Clearly,〈ê, z〉 ≤
〈ê′, z〉 ∀ z ∈ C[F ], i.e. 〈êi, z〉 ≤ 〈ê′i, z〉 ∀ z ∈ C[F ]. Henceϕi(z) = −〈êi, z〉 ∀ z ∈ C[F ].

• Convexity of allϕi follows immediately from their definition.
• ϕi(e) ∈ {0,1} ∀ e ∈ E, i = 1, . . . , r. For every functionϕi we observe that 0∈ ∆i

impliesϕi ≥ 0 and∆i ⊆ ∆ impliesϕi(e) ≤ 1∀ e ∈ E.
• ϕi(e) = 1 ⇒ ϕj(e) = 0∀ j �= i. Assumeϕi(e) = ϕj(e) = 1 for i �= j ⇒ ∃ẑi ∈ ∆i,
ẑj ∈ ∆j : 〈ẑi, e〉 = 〈ẑj, e〉 = −1⇒ ∃ẑ = ẑi+ ẑj ∈ ∆with 〈ẑ, e〉 = −2. This contradicts
∆∗ being dual to∆.
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• ∀ e ∈ E∃i ∈ {1, . . . , r} with ϕi(e) = 1. Assume∃e ∈ E : ϕi(e) = 0∀ i = 1, . . . , r. By
duality of∆ and∆∗∃ẑ ∈ ∆ : 〈ẑ, e〉 = −1, whereẑ is contained in the facet dual toe.
Now ẑ = ẑ1+ · · · + ẑr with ẑi ∈ ∆I ∀ i = 1, . . . , r.⇒ ∃ẑk ∈ ∆k with 〈ẑk, e〉 < 0. This
contradictsϕi(e) = 0∀ i = 1, . . . , r.

⇐: Follows from

∆ = {ẑ ∈ MR : 〈ẑ, z〉 ≥ −ϕ(z)∀ z ∈ NR},
whereϕ =∑

i ϕi (i = 1, . . . , r). �

It can be shown that every nef partition of a reflexive polytope∆ gives a dual nef partition
of a reflexive polytope∇, which turns out to be an involution on the set of reflexive polytopes
with nef partitions.

Remark 3.3 ([23]). Let Π(∆) = {∆1, . . . , ∆r} be a nef partition and denote byE =
E1 ∪ · · · ∪ Er the set of vertices∆∗v. Definer rational polyhedra∇i ⊂ NR (i = 1, . . . , r)
as

∇i = Conv(Ei ∪ {0}).
Then there is the following relation between∆i and∇j (i, j = 1, . . . , r):

〈∆i,∇j〉 =
{
≥ −1 if i = j,
≥ 0 otherwise

and the∇i are maximal with that property. In particular∇ = ∇1 + · · · + ∇r is a reflexive
polyhedron with a nef partitionΠ(∇) = {∇1, . . . ,∇r}, and there is a natural involution on
the set of reflexive polyhedra with nef partitions:

ι : Π(∆) = {∆1, . . . , ∆r} �→ Π(∇) = {∇1, . . . ,∇r}.

Remark 3.4. The following procedure can be used to find all nef partitions of a reflexive
polyhedron∆ ⊂ MR:

• First calculate∆∗ ⊂ NR.
• Take disjoint unionsE = E1 ∪ · · · ∪ Er of vertices of∆∗.
• Check if∇ = ∇1 + · · · + ∇r with ∇i = Conv(Ei ∪ {0}) is reflexive and∇i ∩ ∇j =
{0} ∀ i �= j.

4. Gorenstein cones

The (string theoretic) Hodge numbers of a Calabi–Yau manifold corresponding to a nef
partition are the coefficients of theE-polynomial:

Est(V ; u, v) =
∑
(−1)p+qhp,qst u

pvq,
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which can be computed from a higher-dimensional Gorenstein cone[16] that is constructed
using the data of a nef partition[14,16]. In this section we will give the definition of a
Gorenstein cone and recall its construction starting with a nef partition.

A rational coneC ⊂ MR is calledGorensteinif there exists a pointn ∈ N in the dual
lattice such that〈v, n〉 = 1 for all generators of the semigroupC∩M. Given a nef partition
Π(∆) = {∆1, . . . , ∆r}, we can construct such a cone. First we go to a larger space and
extend the canonical pairing. LetZ

r be the standardr-dimensional lattice andRr its real
scalar extension. We put̄N = Z

r ⊕ N, d̄ = d + r andM̄ = Hom(N̄,Z). We extend the
canonicalZ-bilinear pairing〈∗, ∗〉 : M×N → Z to a pairing between̄M andN̄ = Z

r⊕N
by the formula

〈(a1, . . . , ar,m), (b1, . . . , br, n)〉 =
r∑
i=1

aibi + 〈m, n〉.

The real scalar extensions ofN̄ andM̄ are denoted bȳNR andM̄R, respectively, with the
correspondingR-bilinear pairing〈∗, ∗〉: M̄R × N̄R→ R.

Definition 4.1. For a nef partitionΠ(∆) = {∆1, . . . , ∆r} we construct ād-dimensional
Gorenstein coneC∆ ⊂ M̄R

C∆ = {(λ1, . . . , λr, λ1ẑ1+ · · · + λrẑr) ∈ M̄R : λi ∈ R≥, ẑi ∈ ∆i, i = 1, . . . , r}
with n∆ ∈ N̄ uniquely defined by the conditions

〈ẑ, n∆〉 = 0 ∀ ẑ ∈ MR ⊂ M̄R, 〈êi, n∆〉 = 1 for i = 1, . . . , r,

where{ê1, . . . , êr} is the standard basis ofZ
r ⊂ M̄.

Note that all generators ofC∆ ∩ M̄ lie on the hyperplane〈ẑ, n∆〉 = 1. They span the
d − 1-dimensional supporting polyhedron

K∆ = {ẑ ∈ C∆ : 〈ẑ, n∆〉 = 1}
of C. SinceK∆ ∩ M̄ has no interior point, we get

K∆ ∩ M̄ =
⋃

i=1,...,r

(êi ×∆i) ∩ M̄.

Remark 4.2 ([14]). Let Π(∇) = {∇1, . . . ,∇r} be the dual nef partition. Then the
Gorenstein cone

C∇ = {(µ1, . . . , µr, µ1z1+ · · · + µrzr) ∈ N̄R : µi ∈ R≥, zi ∈ ∇i, i = 1, . . . , r}
is dual toC∆ defined inDefinition 4.1. Note, however, thatK∆ is not dual toK∇ !

5. Combinatorial polynomials of Eulerian posets

Batyrev and Borisov[16] gave an explicit formula for the string-theoreticE-polynomial
for a Calabi–Yau complete intersectionV in a Gorenstein toric Fano variety. This polynomial
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depends only on the combinatorial data of the corresponding Gorenstein cone. We will give
some basic definitions of combinatorial polynomials on Eulerian Posets, which are used to
compute theE-polynomial, and formulate it in a way which can be used for the explicit
calculation of the Hodge numbers.

LetP be anEulerian Poset, i.e. a finite partially ordered set with unique minimal element
0̂, maximal element̂1 and the same lengthd of every maximal chain ofP . For anyx ≤ y ∈ P ,
define theinterval I = [x, y] as

[x, y] = {z ∈ P : x ≤ z ≤ y}.
In particular, we haveP = [0̂, 1̂]. Define therank functionρ : P → {0, . . . , d} onP by
settingρ(x) equal to the length of the interval [0̂, x]. Note that for any Eulerian PosetP ,
every intervalI = [x, y] is again an Eulerian Poset with rank functionρ(z)− ρ(x)∀ z ∈ I.
If an Eulerian Poset has rankd, then thedual PosetP∗ is also an Eulerian Poset with rank
functionρ∗ = d − ρ.

Example 5.1. Let C ∈ NR be ad-dimensional cone with its dualC∗ ∈ MR. There is a
canonical bijective correspondenceF ↔ F∗ between facesF ⊆ C∗ andF∗ ⊆ C∗ with
dimF + dimF∗ = d [25]:

F �→ F∗ = {z ∈ C∗ : 〈ẑ, z〉 = 0∀ z ∈ F },
which reverses the inclusion relation between faces. We denote the faces ofC by indicesx
and define the posetP = [0̂, 1̂] as the poset of all facesCx ⊆ C with maximal elementC
and minimal element{0} and rank functionρ(x) = dim(Cx)∀ x ∈ P . The dual posetP∗
can be identified with the poset of facesC∗x ⊆ C∗ of the dual coneC∗ with rank function
ρ∗(x∗) = dim(C∗x)∀ x∗ ∈ P∗.

Definition 5.2. Let P be an Eulerian Poset of rankd as above. Define thepolynomial
B(P; u, v) ∈ Z[u, v] by the following rules[16,39]:

• B(P; u, v) = 1 if d = 0;
• The degree ofB(P; u, v) with respect tov is less thand/2;
• ∑

0̂≤x≤1̂B([0̂, x]; u−1, v−1)(uv)ρ(x)(v−u)d−ρ(x) =∑
0̂≤x≤1̂B([x, 1̂]; u, v)(uv−1)ρ(x).

Let us consider how we can construct theB-polynomial for an intervalI = [x, y] ⊆ P
with d = ρ(y)−ρ(x). Suppose we know theB-polynomialsB(Ĩ; u, v) for all sub-intervals
Ĩ = [x̃, ỹ] ⊂ I. Then we know all terms of the relation formula for theB-polynomials in
5.2 except forB(I; u, v) on the right hand side andB(I; u−1, v−1)(uv)d on the left hand
side. Because thev-degree ofB(I; u, v) is less thand/2, the possible degrees of monomials
with respect tov inB(I; u, v) andB(I; u−1, v−1)(uv)d do not coincide and we can calculate
B(I; u, v). So if we have to computeB(P; u, v), we first have to calculate theB-polynomials
for all intervals with rank 0 (which are per definition 1), then those intervals with rank 1,
etc.

Remark 5.3. Let P be an Eulerian Poset of rankd, P∗ be the dual. Then the polynomial
defined in 5.2 satisfies
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B(P; u, v) = (−u)dB(P∗; u−1, v).

Definition 5.4. Let P be the Eulerian Poset corresponding to the Gorenstein coneC =
C∆ ⊂ M̄R from Definition 4.1. Define two functions on the set of faces ofC by

S(Cx, t) = (1− t)ρ(x)
∑

m∈Cx∩M̄
tdeg(m), T(Cx, t) = (1− t)ρ(x)

∑
m∈Int(Cx)∩M̄

tdeg(m),

where Int(Cx) denotes the relative interior ofCx ⊆ C and deg(m) = 〈m, n∆〉.
The following statement is a consequence of the Serre duality[40].

Proposition 5.5. For the Gorenstein coneC = C∆ ⊂ M̄R the functions S and T are
polynomials: (Cx, t), T(Cx, t) ∈ Z[t], and they satisfy the relation

S(Cx, t) = tρ(x)T(Cx, t−1).

Remark 5.6. ForS =∑
i ait

i andT =∑
i bit

i as defined above 5.5 implies that

a0+ a1t + · · · + antn = b0t
n + b1t

n−1+ · · · + bn−1t + bn,

wheren = dimCx and we get the relations

ai = bn−i(i = 1, . . . , n)

for the coefficients ofS andT . Sincea0 = 1 andb0 = 0, the leading coefficients are
determined to bean = 0 andbn = 1. So it is sufficient to calculate|Cx ∩ m · K∆| and
|Int(Cx ∩ m · K∆)| for m = 0, . . . , [dim(Cx)/2] and to use the fact thatai = bn−i for
i > dim((Cx)/2).

Batyrev and Borisov[16] showed in their paper that thestring-theoretic E-polynomialof
a nef partition can be calculated from the data of the corresponding Gorenstein cone.

Proposition 5.7 ([16]). LetΠ(∆) = {∆1, . . . , ∆r} be a nef partition andC = C∆ ⊂ M̄R
be thed̄-dimensional reflexive Gorenstein cone defined in4.1 (with dual coneC∗ = C∇ ⊂
N̄R). Denote by P the poset of facesCx ⊆ C (seeExample 5.1). Then the string-theoretic
E-polynomial is given by

Est(V ; u, v) =
∑

I=[x,y]⊆P

(−1)ρ(y)

(uv)r
(v− u)ρ(x)B(I∗; u, v)(uv− 1)d̄−ρ(y)A(x,y)(u, v)

with

A(x,y)(u, v) =
∑

(m,n)∈Int(Cx)∩M̄×Int(C∗y)∩N̄

(u
v

)deg(m)
(

1

uv

)deg(n)

.
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The dual partitionΠ(∇) = {∇1, . . . ,∇r} corresponds to the Calabi–Yau complete in-
tersectionW and(V,W) is a mirror pair of (singular) Calabi–Yau varieties, at least in the
sense that

Est(V ; u, v) = (−u)d−rEst

(
W; 1

u
, v

)

or equivalentlyhp,qst (V) = hn−p,qst (W) for 0 ≤ p, q ≤ n = dim(V) = dim(W).

Remark 5.8. Using the duality 5.3 for theB-polynomials andDefinition 5.4with relation
5.5 between theS- andT -polynomials, we can write theE-polynomial as

Est(V ; u, v) =
∑

I=[x,y]⊆P

(−1)ρ(x)uρ(y)

(uv)r
S

(
Cx,

v

u

)
S(C∗y,uv)B(I; u−1, v).

This equation can be used for explicit calculations.

6. Results

Using the formula for theE-polynomial 5.8 we are now able to construct Calabi–Yau
complete intersections starting with a reflexive polytope∆ ⊂ MR (or ∆∗ ⊂ NR). Our
first task is to compare the toric construction to a list of complete intersections in weighted
projective spaces, which was produced by Klemm[12]. Then we construct a larger number
of nef partitions for different classes of five-dimensional reflexive polytopes and compare
the Hodge data with the complete results that are available for toric hypersurfaces[9,24].

6.1. Comparison with weighted projective space

In order to identify complete intersections inWP
5 as special cases of the toric construction

it is natural to start with the Newton polyhedron and compare the Hodge data for various
nef partitions. In what follows we will analyze some examples from Klemm’s list[12] and
discuss the different situations that can occur.

In the simplest case the Newton polyhedron�(d) corresponding to degree(d1, d2) equa-
tions withd = d1 + d2 is reflexive and the Hodge numbers of a nef partitionΠ(�(d)) =
{∆̃1, ∆̃2} agree with those in[12]. This works already for the first example of degree
(4, 2) equations inP1,1,1,1,1,1. In general,�(d1+ d2)may differ from the Minkowski sum
�(d1) +�(d2) and none of the two plytopes has to be reflexive. In many cases we find a
simple modification of these polytopes that makes the Hodge data agree.

• Already in the second example of this list the Newton polyhedron�(7) for the weight
system ofWP1,1,1,1,1,2 is not reflexive. It is, however, possible to reduce�(7) to a
reflexive polyhedron∆ by omitting five points, so that its dual provides a toric resolution
of singularities of the weighted projective space. Indeed, the Hodge data for(d1, d2) =
(3,4) matches for one nef partition of the resulting polytope.
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• Another possibility is that the Newton polyhedron is reflexive, but the Hodge numbers do
not agree. In such a case we can compute the Minkowski sum∆̃ = �(d1)+�(d2) and
check if it is reflexive and gives the right Hodge numbers. This works, e.g. for degrees
(d1, d2) = (5,3) in case of the weight system forWP1,1,1,1,2,2.

There are still some examples where we are not able to reproduce the Hodge data. For
example, in case of the weight system forWP1,1,1,1,2,3 and degrees(d1, d2) = (5,4),
neither�(9) (which has 575 points) nor the Minkowski sum�(5)+�(4) (with only 211
points) is reflexive. The largest reflexive subpolytope of�(9) has 570 points, but it’s nef
partitions do not yield the right Hodge numbers. Omitting up to 30 points we find another
21 reflexive polyhedra, but none of their nef partitions yieldsh11 = 2 andh12 = 84. We
thus found no candidate for a toric description and a more detailed analysis of the geometry
would be required to check if a toric description exists.

6.2. New Hodge numbers

Of course, one of our main interests is to find new Hodge data. In[9,24] the complete
set of 30 108 pairs of Hodge numbers corresponding to hypersurfaces in toric varieties has
been constructed (the number is 15,122 if we count those withh11 ≥ h12 because 136 are
self-dual). Picking out only the new Hodge data from the list of 2387 pairs arising from
weightedP5 [12], i.e. those not contained in[24], there remain only 15 new data, which we
list in Table 1. (Note that this class is not mirror symmetric.)

Using the toric construction, we started with reflexive polyhedra that are described by
single or combined weight systems, as they were constructed systematically for Calabi–Yau
4-fold [11,21,24], and from Minkowski sums of Newton polytopes that arise in the context
of weighted projective spaces. In this way we found 16 (with mirror duality 32) pairs of new
Hodge numbers. They are listed inAppendix A, together with a detailed information about
the starting polyhedron. Most of them lie in the lower boundary regionh11 ≤ 6 which is
less covered by the “background” of toric hypersurfaces. It is remarkable that almost every
pair of new Hodge numbers corresponds to a starting polyhedron∆∗ ∩ N in theN-lattice
with less than 20 points. Thus, to get a more complete result for new spectra in that range,
we used the program package that was written for the classification of reflexive polyhedra
[24,41] to construct a fairly complete set of reflexive polyhedra with up to 10 points (they
were all found as subpolytopes of some 10 000 polyhedra with up to 40 points originating
from transversal weight systems[21]). Indeed, using these polytopes for∆∗ ∩N, we found

Table 1
New Hodge numbers in[12], as compared to toric hypersurfaces (R = x means that we found the same Hodge
data for nef partitions)

h11 h21 R h11 h21 R h11 h21 R

1 61 x 2 62 x 7 26
1 73 x 2 68 x 8 20
1 79 x 3 47 x 12 12
1 89 x 3 55 x 13 13 x
1 129 x 3 61 x 17 11
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Table 2
New Hodge numbers with toric CICYs.

h11 h21 h11 h21 h11 h21 h11 h21 h11 h21 h11 h21

1 25 2 60 3 24 3 52 4 16 4 53
1 37 2 62 3 27 3 53 4 22 4 75
1 61 2 64 3 29 3 54 4 24 4 83
1 73 2 66 3 31 3 55 4 26 5 25
1 79 2 68 3 33 3 56 4 30 5 27
1 89 2 70 3 35 3 58 4 31 5 102
1 129 2 72 3 37 3 60 4 32 6 20
2 30 2 76 3 39 3 61 4 33 6 24
2 36 2 77 3 41 3 62 4 38 7 22
2 44 2 78 3 42 3 64 4 39 8 14
2 50 2 80 3 44 3 68 4 41 13 13
2 54 2 82 3 47 3 70 4 43 13 15
2 56 2 100 3 48 3 80 4 45
2 58 2 112 3 49 3 101 4 47
2 59 3 23 3 50 3 113 4 51

Fig. 1. Toric CICYs (•) and CICYs inWP5 (�) in the background of toric hypersurfaces (◦) with h11≤10
h21≤170.

87 pairs of Hodge numbers not contained in[24]. They are listed inTable 2and are shown
in Fig. 1 in the background of toric hypersurfaces and CICYs inWP

5 in the range of
1≤ h11 ≤ 10 and 1≤ h21 ≤ 170.

The advantage of this strategy is that it is easy to get a rather complete list of reflexive
polytopes with a small number of points, which at the same time have a high probability for
the existence of nef partitions and whose Hodge data are outside the range that is already
completely covered by hypersurfaces. Moreover, this class dissipates less time in computing
the nef partitions because of their small number of vertices. Pursuing this strategy, a further
step will be to increase the codimension by one and to construct complete intersections
using six-dimensional starting polytopes with a small number of points.
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Appendix A. Hodge data

New Hodge numbers of toric CICYs using combined weight systems
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d1 w11, . . . , wn1 d2 w12, . . . , wn2 h11 h21 −χ #∆ ∩M #∆v #∆∗ ∩N #∆∗v

3 1 1 1 0 0 0 0 4 0 0 0 1 1 1 1 2 59 114 350 12 8 7
3 1 1 1 0 0 0 0 5 1 0 0 1 1 1 1 2 60 116 379 12 8 7
3 1 1 1 0 0 0 0 4 0 0 0 1 1 1 1 2 62 120 350 12 8 7
3 1 1 1 0 0 0 0 6 0 1 1 1 1 1 1 2 62 120 381 12 8 7
3 1 1 1 0 0 0 0 5 1 0 0 1 1 1 1 2 70 136 379 12 8 7
3 1 1 1 0 0 0 0 6 0 1 1 1 1 1 1 2 76 148 381 12 8 7
3 1 1 1 0 0 0 0 4 0 0 0 1 1 1 1 2 77 150 350 12 8 7
3 1 1 1 0 0 0 0 8 3 0 0 1 1 2 1 2 100 196 496 16 9 8
4 1 1 2 0 0 0 0 5 1 0 0 1 1 1 1 3 55 104 292 12 9 7
4 1 1 2 0 0 0 0 6 1 0 0 1 1 1 2 3 55 104 282 12 9 7
4 2 1 1 0 0 0 0 8 0 1 2 1 1 1 2 3 55 104 247 9 9 7
4 2 1 1 0 0 0 0 12 0 1 3 2 2 2 2 3 55 104 265 9 9 7
4 1 1 2 0 0 0 0 4 0 0 0 1 1 1 1 3 55 104 315 12 9 7
3 1 1 1 0 0 0 0 5 0 0 0 1 1 1 2 3 56 106 340 18 9 8
4 1 1 2 0 0 0 0 16 1 0 0 2 3 4 6 13 15 4 117 20 15 10

New Hodge numbers of toric CICYs using one weight system

d w1, . . . , wn h11 h21 −χ #∆ ∩M #∆v #∆∗ ∩N #∆∗v

12 1 1 2 2 3 3 1 61 120 407 6 7 6
6 1 1 1 1 1 1 1 73 144 462 6 7 6
8 1 1 1 1 2 2 1 73 144 483 6 7 6
6 1 1 1 1 1 1 1 89 176 462 6 7 6

12 1 2 2 2 2 3 2 62 120 321 6 8 6
9 1 1 1 2 2 2 2 68 132 434 12 8 7

10 1 1 2 2 2 2 2 68 132 378 6 8 6

New Hodge numbers of toric CICYs using the Minkowski sum

d w1, . . . , wn d1 d2 h11 h21 −χ #∆ ∩M #∆v #∆∗ ∩N #∆∗v

12 1 1 2 2 3 3 6 6 1 61 120 407 6 7 6
6 1 1 1 1 1 1 2 4 1 73 144 462 6 7 6
8 1 1 1 1 2 2 4 4 1 73 144 483 6 7 6
6 1 1 1 1 1 1 2 4 1 89 176 462 6 7 6
8 1 1 1 1 1 3 4 4 1 129 256 636 10 8 7

12 1 2 2 2 2 3 6 6 2 62 120 321 6 8 6
9 1 1 1 2 2 2 4 5 2 68 132 434 12 8 7

10 1 1 2 2 2 2 4 6 2 68 132 378 6 8 6
14 1 2 2 3 3 3 8 6 3 47 88 294 12 9 7
16 1 2 2 3 4 4 8 8 3 55 104 327 8 9 7
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